o
    -hz*                     @  s   d dl mZ d dlZd dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZ d dl
mZ G dd	 d	eZG d
d deZG dd deZG dd deZeG dd dZG dd dZG dd dejZdS )    )annotationsN)	dataclass)Enum)Optional)Union)Floatc                   @     e Zd ZdZdZ	 dZdS )VectorIndexTypezEnum representing different types of VECTOR index structures.

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.41

    HNSWIVFN)__name__
__module____qualname____doc__r
   r    r   r   c/var/www/html/pro-man-master/venv/lib/python3.10/site-packages/sqlalchemy/dialects/oracle/vector.pyr	      s    r	   c                   @  &   e Zd ZdZdZ	 dZ	 dZ	 dZdS )VectorDistanceTypezEnum representing different types of vector distance metrics.

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.41

    	EUCLIDEANDOTCOSINE	MANHATTANN)r   r   r   r   r   r   r   r   r   r   r   r   r   )   s    r   c                   @  r   )VectorStorageFormatzEnum representing the data format used to store vector components.

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.41

    INT8BINARYFLOAT32FLOAT64N)r   r   r   r   r   r   r   r   r   r   r   r   r   H   s    r   c                   @  r   )VectorStorageTypez}Enum representing the vector type,

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.43

    SPARSEDENSEN)r   r   r   r   r   r   r   r   r   r   r   c   s    r   c                   @  s   e Zd ZU dZejZded< dZded< dZ	ded< dZ
ded	< dZded
< dZded< dZded< dZded< dZded< dd ZdS )VectorIndexConfiga  Define the configuration for Oracle VECTOR Index.

    See :ref:`oracle_vector_datatype` for background.

    .. versionadded:: 2.0.41

    :param index_type: Enum value from :class:`.VectorIndexType`
     Specifies the indexing method. For HNSW, this must be
     :attr:`.VectorIndexType.HNSW`.

    :param distance: Enum value from :class:`.VectorDistanceType`
     specifies the metric for calculating distance between VECTORS.

    :param accuracy: interger. Should be in the range 0 to 100
     Specifies the accuracy of the nearest neighbor search during
     query execution.

    :param parallel: integer. Specifies degree of parallelism.

    :param hnsw_neighbors: interger. Should be in the range 0 to
     2048. Specifies the number of nearest neighbors considered
     during the search. The attribute :attr:`.VectorIndexConfig.hnsw_neighbors`
     is HNSW index specific.

    :param hnsw_efconstruction: integer. Should be in the range 0
     to 65535. Controls the trade-off between indexing speed and
     recall quality during index construction. The attribute
     :attr:`.VectorIndexConfig.hnsw_efconstruction` is HNSW index
     specific.

    :param ivf_neighbor_partitions: integer. Should be in the range
     0 to 10,000,000. Specifies the number of partitions used to
     divide the dataset. The attribute
     :attr:`.VectorIndexConfig.ivf_neighbor_partitions` is IVF index
     specific.

    :param ivf_sample_per_partition: integer. Should be between 1
     and ``num_vectors / neighbor partitions``. Specifies the
     number of samples used per partition. The attribute
     :attr:`.VectorIndexConfig.ivf_sample_per_partition` is IVF index
     specific.

    :param ivf_min_vectors_per_partition: integer. From 0 (no trimming)
     to the total number of vectors (results in 1 partition). Specifies
     the minimum number of vectors per partition. The attribute
     :attr:`.VectorIndexConfig.ivf_min_vectors_per_partition`
     is IVF index specific.

    r	   
index_typeNzOptional[VectorDistanceType]distancezOptional[int]accuracyhnsw_neighborshnsw_efconstructionivf_neighbor_partitionsivf_sample_per_partitionivf_min_vectors_per_partitionparallelc                 C  sN   t | j| _dD ]}t| |}|d ur$t|ts$t| dt|j qd S )N)r$   r%   r&   r'   r(   r)   r#   z$ must be an integer ifprovided, got )r	   r!   getattr
isinstanceint	TypeErrortyper   )selffieldvaluer   r   r   __post_init__   s   
	zVectorIndexConfig.__post_init__)r   r   r   r   r	   r
   r!   __annotations__r"   r#   r$   r%   r&   r'   r(   r)   r2   r   r   r   r   r    x   s   
 2r    c                   @  s"   e Zd ZdZdddZd	d
 ZdS )SparseVectorz
    Lightweight SQLAlchemy-side version of SparseVector.
    This mimics oracledb.SparseVector.

    .. versionadded:: 2.0.43

    num_dimensionsr,   indicesUnion[list, array.array]valuesc                 C  sh   t |tjr|jdkrtd|}t |tjstd|}t|t|kr)td|| _|| _|| _d S )NIdz.indices and values must be of the same length!)r+   arraytypecodelenr-   r5   r6   r8   )r/   r5   r6   r8   r   r   r   __init__   s   
zSparseVector.__init__c                 C  s$   d| j  dt| j d| jj dS )NzSparseVector(num_dimensions=z, size=z, typecode=))r5   r=   r6   r8   r<   )r/   r   r   r   __str__   s   
zSparseVector.__str__N)r5   r,   r6   r7   r8   r7   )r   r   r   r   r>   r@   r   r   r   r   r4      s    
r4   c                   @  sj   e Zd ZdZdZd Zejdejdej	dej
diZddd	Zd
d Zdd Zdd ZG dd dejjZdS )VECTORzOracle VECTOR datatype.

    For complete background on using this type, see
    :ref:`oracle_vector_datatype`.

    .. versionadded:: 2.0.41

    TbBfr:   Nc                 C  sd   |durt |tstd|durt |tstd|dur't |ts'td|| _|| _|| _dS )a  Construct a VECTOR.

        :param dim: integer. The dimension of the VECTOR datatype. This
         should be an integer value.

        :param storage_format: VectorStorageFormat. The VECTOR storage
         type format. This should be Enum values form
         :class:`.VectorStorageFormat` INT8, BINARY, FLOAT32, or FLOAT64.

        :param storage_type: VectorStorageType. The Vector storage type. This
         should be Enum values from :class:`.VectorStorageType` SPARSE or
         DENSE.

        Nzdim must be an intergerz:storage_format must be an enum of type VectorStorageFormatz6storage_type must be an enum of type VectorStorageType)r+   r,   r-   r   r   dimstorage_formatstorage_type)r/   rE   rF   rG   r   r   r   r>      s"   


zVECTOR.__init__c                   s    fdd}|S )z
        Converts a Python-side SparseVector instance into an
        oracledb.SparseVectormor a compatible array format before
        binding it to the database.
        c                   sf   | d u s
t | tjr| S t | trj}t|| } | S t | tr/ j| j| j| j	S t
d)Nz
                    Invalid input for VECTOR: expected a list, an array.array,
                    or a SparseVector object.
                    )r+   r;   list_array_typecoderF   r4   dbapir5   r6   r8   r-   )r1   r<   dialectr/   r   r   process(  s   

z.VECTOR._cached_bind_processor.<locals>.processr   )r/   rL   rM   r   rK   r   _cached_bind_processor!  s   zVECTOR._cached_bind_processorc                   s    fdd}|S )a  
        Converts database-returned values into Python-native representations.
        If the value is an oracledb.SparseVector, it is converted into the
        SQLAlchemy-side SparseVector class.
        If the value is a array.array, it is converted to a plain Python list.

        c                   sF   | d u rd S t | tjrt| S t |  jjr!t| j| j| jdS d S )N)r5   r6   r8   )r+   r;   rH   rJ   r4   r5   r6   r8   )r1   rL   r   r   rM   M  s   z0VECTOR._cached_result_processor.<locals>.processr   )r/   rL   coltyperM   r   rO   r   _cached_result_processorD  s   	zVECTOR._cached_result_processorc                 C  s   | j |dS )z7
        Map storage format to array typecode.
        r:   )_typecode_mapget)r/   r<   r   r   r   rI   ^  s   zVECTOR._array_typecodec                   @  s$   e Zd Zdd Zdd Zdd ZdS )zVECTOR.comparator_factoryc                 C     | j dtd|S )Nz<->return_typeopr   r/   otherr   r   r   l2_distancee     z%VECTOR.comparator_factory.l2_distancec                 C  rT   )Nz<#>rU   rW   rY   r   r   r   inner_producth  r\   z'VECTOR.comparator_factory.inner_productc                 C  rT   )Nz<=>rU   rW   rY   r   r   r   cosine_distancek  r\   z)VECTOR.comparator_factory.cosine_distanceN)r   r   r   r[   r]   r^   r   r   r   r   comparator_factoryd  s    r_   )NNN)r   r   r   r   cache_ok__visit_name__r   r   r   r   r   rR   r>   rN   rQ   rI   types
TypeEngine
Comparatorr_   r   r   r   r   rA      s    	
##rA   )
__future__r   r;   dataclassesr   enumr   typingr   r   sqlalchemy.typesrb   r   r	   r   r   r   r    r4   rc   rA   r   r   r   r   <module>   s    	P!